Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae.

نویسندگان

  • Gilberto Ocampo
  • Nuria K Koteyeva
  • Elena V Voznesenskaya
  • Gerald E Edwards
  • Tammy L Sage
  • Rowan F Sage
  • J Travis Columbus
چکیده

PREMISE OF THE STUDY Portulacaceae is a family with a remarkable diversity in photosynthetic pathways. This lineage not only has species with different C4 biochemistry (NADP-ME and NAD-ME types) and C3-C4 intermediacy, but also displays different leaf anatomical configurations. Here we addressed the evolutionary history of leaf anatomy and photosynthetic pathways in Portulacaceae. METHODS Photosynthetic pathways were assessed based on leaf anatomy and carbon isotope ratios. Information on the NADP-ME and NAD-ME C4 variants was obtained from the literature. The evolutionary relationships and trait evolution were estimated under a Bayesian framework, and divergence times were calibrated using the ages obtained in a previous study. KEY RESULTS C4 photosynthesis is the main pathway in Portulacaceae. One clade (Cryptopetala), however, includes species that have non-Kranz anatomy and C3 type isotope values, two of which are C3-C4 intermediates. The ancestral leaf anatomy for the family is uncertain. The analysis showed one origin of the C4 pathway, which was lost in the Cryptopetala clade. Nevertheless, when a second analysis was performed taking into account the limited number of species with NAD-ME and NADP-ME data, a secondary gain of the C4 pathway from a C3-C4 intermediate was inferred. CONCLUSIONS The C4 pathway evolved ca. 23 Myr in the Portulacaceae. The number of times that the pathway evolved in the family is uncertain. The diversity of leaf anatomical types and C4 biochemical variants suggest multiple independent origins of C4 photosynthesis. Evidence for a switch from C4 to C3-C4 intermediacy supports the hypothesis that intermediates represent a distinct successful strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae)

Portulacaceae is one of 19 families of terrestrial plants in which species having C(4) photosynthesis have been found. Representative species from major clades of the genus Portulaca were studied to characterize the forms of photosynthesis structurally and biochemically. The species P. amilis, P. grandiflora, P. molokiniensis, P. oleracea, P. pilosa, and P. umbraticola belong to the subgenus Po...

متن کامل

Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae.

The Portulacaceae is one of the few terrestrial plant families known to have both C(4) and Crassulacean acid metabolism (CAM) species. There may be multiple origins of the evolution of CAM within the Portulacaceae but the only clear evidence of C(4) photosynthesis is found in members of the genus Portulaca. In the Portulaca, CAM succulent tissue is overlaid with the C(4) tissue in a unique fash...

متن کامل

Anatomical variation in Cactaceae and relatives: Trait lability and evolutionary innovation.

The cacti have undergone extensive specialization in their evolutionary history, providing an excellent system in which to address large-scale questions of morphological and physiological adaptation. Recent molecular phylogenetic studies suggest that (1) Pereskia, the leafy genus long interpreted as the sister group of all other cacti, is likely paraphyletic, and (2) Cactaceae are nested within...

متن کامل

Regulation of Light Energy Distribution between Photosynthetic Pigment Systems; a Possible Role of Leaf Anatomy

Photosynthetic Pigments, Energy Distribution, Leaf Anatomy The complex anatomical structure of an intact leaf results in a distribution of photosynthetically active energy between photosynthetic pigments which is different from that observed in isolated chloroplasts. The variance is due mainly to scattering at the gas-liquid interface between cells and intercellular space which tends to increas...

متن کامل

Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 100 12  شماره 

صفحات  -

تاریخ انتشار 2013